Orthogonal polynomial representation of imaginary-time Green’s functions
نویسندگان
چکیده
منابع مشابه
Imaginary Highest-weight Representation Theory and Symmetric Functions
Affine Lie algebras admit non-classical highest-weight theories through alternative partitions of the root system. Although significant inroads have been made, much of the classical machinery is inapplicable in this broader context, and some fundamental questions remain unanswered. In particular, the structure of the reducible objects in non-classical theories has not yet been fully understood....
متن کاملEfficient quantum trajectory representation of wavefunctions evolving in imaginary time.
The Boltzmann evolution of a wavefunction can be recast as imaginary-time dynamics of the quantum trajectory ensemble. The quantum effects arise from the momentum-dependent quantum potential--computed approximately to be practical in high-dimensional systems--influencing the trajectories in addition to the external classical potential [S. Garashchuk, J. Chem. Phys. 132, 014112 (2010)]. For a no...
متن کاملOn Polynomial Representation Functions for Multilinear Forms
Given an infinite sequence of positive integers A, we prove that for every nonnegative integer k the number of solutions of the equation n = a1+ · · ·+ak, a1, . . . , ak ∈ A, is not constant for n large enough. This result is a corollary of our main theorem, which partially answers a question of Sárközy and Sós on representation functions for multilinear forms. The main tool used in the argumen...
متن کاملOrthogonal Polynomial Density Estimates: Alternative Representation and Degree Selection
The density estimates considered in this paper comprise a base density and an adjustment component consisting of a linear combination of orthogonal polynomials. It is shown that, in the context of density approximation, the coefficients of the linear combination can be determined either from a moment-matching technique or a weighted least-squares approach. A kernel representation of the corresp...
متن کاملPolynomial time computable real functions
In this paper, we study computability and complexity of real functions. We extend these notions, already defined for functions over closed intervals or over the real line to functions over particular real open sets and give some results and characterizations, especially for polynomial time computable functions. Our representation of real numbers as sequences of rational numbers allows us to imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2011
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.84.075145